## Problem 51

Consider the physical quantities $s, v, a$, and $t$ with dimensions $[s]=\mathrm{L},[v]=\mathrm{LT}^{-1},[a]=\mathrm{LT}^{-2}$, and $[t]=\mathrm{T}$. Determine whether each of the following equations is dimensionally consistent. (a) $v^{2}=2 a s$; (b) $s=v t^{2}+0.5 a t^{2}$; (c) $v=s / t$; (d) $a=v / t$.

## Solution

## Part (a)

Check the units of both sides.

$$
\begin{aligned}
& {\left[v^{2}\right] \stackrel{?}{=}[2 a s] } \\
& {[v]^{2} \stackrel{?}{=}[2][a][s] } \\
&\left(\mathrm{LT}^{-1}\right)^{2} \stackrel{?}{=} 1 \cdot \mathrm{LT}^{-2} \cdot \mathrm{~L} \\
& \mathrm{~L}^{2} \mathrm{~T}^{-2}=\mathrm{L}^{2} \mathrm{~T}^{-2}
\end{aligned}
$$

Both sides have the same dimensions, so this equation is dimensionally consistent.

## Part (b)

Check the units of both sides.

$$
\begin{aligned}
{[s] } & \stackrel{?}{=}\left[v t^{2}+0.5 a t^{2}\right] \\
\mathrm{L} & \stackrel{?}{=}\left[v t^{2}\right]+\left[0.5 a t^{2}\right] \\
& \stackrel{?}{=}[v]\left[t^{2}\right]+[0.5][a]\left[t^{2}\right] \\
& \stackrel{?}{=}\left(\mathrm{LT}^{-1}\right) \cdot \mathrm{T}^{2}+1 \cdot \mathrm{LT}^{-2} \cdot \mathrm{~T}^{2} \\
& \neq \mathrm{LT}+\mathrm{L}
\end{aligned}
$$

Both sides have different dimensions, so this equation is not dimensionally consistent. $v t^{2}$ should be changed to $v t$ to make it consistent.

## Part (c)

Check the units of both sides.

$$
\begin{aligned}
{[v] } & \stackrel{?}{=}\left[\frac{s}{t}\right] \\
\mathrm{LT}^{-1} & \stackrel{?}{=} \frac{[s]}{[t]} \\
& \stackrel{?}{=} \frac{\mathrm{L}}{\mathrm{~T}} \\
& =\mathrm{LT}^{-1}
\end{aligned}
$$

Both sides have the same dimensions, so this equation is dimensionally consistent.

## Part (d)

Check the units of both sides.

$$
\begin{aligned}
{[a] } & \stackrel{?}{=}\left[\frac{v}{t}\right] \\
\mathrm{LT}^{-2} & \stackrel{?}{=} \frac{[v]}{[t]} \\
& \stackrel{?}{=} \frac{\mathrm{LT}^{-1}}{\mathrm{~T}} \\
& =\mathrm{LT}^{-2}
\end{aligned}
$$

Both sides have the same dimensions, so this equation is dimensionally consistent.

